23 research outputs found

    Machine learning-based ensemble recursive feature selection of circulating miRNAs for cancer tumor classification

    Get PDF
    Circulating microRNAs (miRNA) are small noncoding RNA molecules that can be detected in bodily fluids without the need for major invasive procedures on patients. miRNAs have shown great promise as biomarkers for tumors to both assess their presence and to predict their type and subtype. Recently, thanks to the availability of miRNAs datasets, machine learning techniques have been successfully applied to tumor classification. The results, however, are difficult to assess and interpret by medical experts because the algorithms exploit information from thousands of miRNAs. In this work, we propose a novel technique that aims at reducing the necessary information to the smallest possible set of circulating miRNAs. The dimensionality reduction achieved reflects a very important first step in a potential, clinically actionable, circulating miRNA-based precision medicine pipeline. While it is currently under discussion whether this first step can be taken, we demonstrate here that it is possible to perform classification tasks by exploiting a recursive feature elimination procedure that integrates a heterogeneous ensemble of high-quality, state-of-the-art classifiers on circulating miRNAs. Heterogeneous ensembles can compensate inherent biases of classifiers by using different classification algorithms. Selectin

    Classification and specific primer design for accurate detection of SARS-CoV-2 using deep learning

    Get PDF
    In this paper, deep learning is coupled with explainable artificial intelligence techniques for the discovery of representative genomic sequences in SARS-CoV-2. A convolutional neural network classifier is first trained on 553 sequences from the National Genomics Data Center repository, separating the genome of different virus strains from the Coronavirus family with 98.73% accuracy. The network’s behavior is then analyzed, to discover sequences used by the model to identify SARS-CoV-2, ultimately uncovering sequences exclusive to it. The discovered sequences are validated on samples from the National Center for Biotechnology Information and Global Initiative on Sharing All Influenza Data repositories, and are proven to be able to separate SARS-CoV-2 from different virus strains with near-perfect accuracy. Next, one of the sequences is selected to generate a primer set, and tested against other state-of-the-art primer sets, obtaining competitive results. Finally, the primer is synthesized and tested on patient samples (n = 6 previously tested positive), delivering a sensitivity similar to routine diagnostic methods, and 100% specificity. The proposed methodology has a substantial added value over existing methods, as it is able to both automatically identify promising primer sets for a virus from a limited amount of data, and deliver effective results in a minimal amount of time. Considering the possibility of future pandemics, these characteristics are invaluable to promptly create specific detection methods for diagnostics

    The RD-Connect Genome-Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases.

    Get PDF
    Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next-generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing, and analysis of standardized genome-phenome data within a collaborative environment. Authorized clinicians and researchers submit pseudonymised phenotypic profiles encoded using the Human Phenotype Ontology, and raw genomic data which is processed through a standardized pipeline. After an optional embargo period, the data are shared with other platform users, with the objective that similar cases in the system and queries from peers may help diagnose the case. Additionally, the platform enables bidirectional discovery of similar cases in other databases from the Matchmaker Exchange network. To facilitate genome-phenome analysis and interpretation by clinical researchers, the RD-Connect GPAP provides a powerful user-friendly interface and leverages tens of information sources. As a result, the resource has already helped diagnose hundreds of rare disease patients and discover new disease causing genes

    Solving patients with rare diseases through programmatic reanalysis of genome-phenome data.

    Get PDF
    Funder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health); doi: https://doi.org/10.13039/100011272; Grant(s): 305444, 305444Funder: Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness); doi: https://doi.org/10.13039/501100003329Funder: Generalitat de Catalunya (Government of Catalonia); doi: https://doi.org/10.13039/501100002809Funder: EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj); doi: https://doi.org/10.13039/501100008530Funder: Instituto Nacional de Bioinformática ELIXIR Implementation Studies Centro de Excelencia Severo OchoaFunder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health)Reanalysis of inconclusive exome/genome sequencing data increases the diagnosis yield of patients with rare diseases. However, the cost and efforts required for reanalysis prevent its routine implementation in research and clinical environments. The Solve-RD project aims to reveal the molecular causes underlying undiagnosed rare diseases. One of the goals is to implement innovative approaches to reanalyse the exomes and genomes from thousands of well-studied undiagnosed cases. The raw genomic data is submitted to Solve-RD through the RD-Connect Genome-Phenome Analysis Platform (GPAP) together with standardised phenotypic and pedigree data. We have developed a programmatic workflow to reanalyse genome-phenome data. It uses the RD-Connect GPAP's Application Programming Interface (API) and relies on the big-data technologies upon which the system is built. We have applied the workflow to prioritise rare known pathogenic variants from 4411 undiagnosed cases. The queries returned an average of 1.45 variants per case, which first were evaluated in bulk by a panel of disease experts and afterwards specifically by the submitter of each case. A total of 120 index cases (21.2% of prioritised cases, 2.7% of all exome/genome-negative samples) have already been solved, with others being under investigation. The implementation of solutions as the one described here provide the technical framework to enable periodic case-level data re-evaluation in clinical settings, as recommended by the American College of Medical Genetics

    Towards Automated Malware Creation: Code Generation and Code Integration

    No full text
    The analogies between computer malware and biological viruses are more than obvious. The very idea of an artificial ecosystem where malicious software can evolve and autonomously find new, more effective ways of attacking legitimate programs and damaging sensitive information is both terrifying and fascinating. The paper proposes two different ways for exploiting an evolutionary algorithm to devise malware: the former targeting heuristic-based antivirus scanner; the latter optimizing a Trojan attack. Testing the stability of a system against a malware-based attack, or checking the reliability of the heuristic scan of anti-virus software against an original malware application could be interesting for the research community and advantageous to the IT industry. Experimental results shows the feasibility of the proposed approaches on simple real-world test case

    Accurate Identification of SARS-CoV-2 from Viral Genome Sequences using Deep Learning

    Get PDF
    One of the reasons for the fast spread of SARS-CoV-2 is the lack of accuracy in detection tools in the clinical field. Molecular techniques, such as quantitative real-time RT-PCR and nucleic acid sequencing methods, are widely used to identify pathogens. For this particular virus, however, they have an overall unsatisfying detection rate, due to its relatively recent emergence and still not completely understood features. In addition, SARS-CoV-2 is remarkably similar to other Coronaviruses, and it can present with other respiratory infections, making identification even harder. To tackle this issue, we propose an assisted detection test, combining molecular testing with deep learning. The proposed approach employs a state-of-the-art deep convolutional neural network, able to automatically create features starting from the genome sequence of the virus. Experiments on data from the Novel Coronavirus Resource (2019nCoVR) show that the proposed approach is able to correctly classify SARS-CoV-2, distinguishing it from other coronavirus strains, such as MERS-CoV, HCoV-NL63, HCoV-OC43, HCoV-229E, HCoV-HKU1, and SARS-CoV regardless of missing information and errors in sequencing (noise). From a dataset of 553 complete genome non-repeated sequences that vary from 1,260 to 31,029 bps in length, the proposed approach classifies the different coronaviruses with an average accuracy of 98.75% in a 10-fold cross-validation, identifying SARS-CoV-2 with an AUC of 98%, specificity of 0.9939 and sensitivity of 1.00 in a binary classification. Then, using the same basis, we classify SARS-CoV-2 from 384 complete viral genome sequences with human host, that contain the gene ORF1ab from the NCBI with a 10-fold accuracy of 98.17%, a specificity of 0.9797 and sensitivity of 1.00. These preliminary results seem encouraging enough to identify deep learning as a promising research venue to develop assisted detection tests for SARS-CoV-2. At this end the interaction between viromics and deep learning, will hopefully help to solve global infection problems. In addition, we offer our code and processed data to be used for diagnostic purposes by medical doctors, virologists and scientists involved in solving the SARS-CoV-2 pandemic. As more data become available we will update our system

    Optimization models for sustainable insect production chains

    No full text
    International audienceInsect value chains are a complex system with non-linear links between many economic, environmental, and social variables. Multi-objective optimization (MOO) algorithms for finding optimal options for complex system functioning can provide a valuable insight in the development of sustainable insect chains. This review proposes a framework for MOO application that is based on gradual implementation, beginning with factors that have an immediate impact on insect production (feed qualities, resource utilization, yield), and progressing to integrated units (environmental, social, and economic impacts). The review introduces the key hotspots of insect production chains, which have been developed in suitable MOO objectives. They represent aspects of resource use, feed quality and its conversion by insects, labor safety and wage fairness, as well as environmental impacts. The capacity of the suggested MOO framework to describe all facets of sustainability may have certain limits. To determine the framework’s applicability and the specific MOO algorithms that can perform the function, modeling and further testing on real insect production chains would be necessary for the intended objectives

    Accurate Identification of SARS-CoV-2 from Viral Genome Sequences using Deep Learning

    No full text
    One of the reasons for the fast spread of SARS-CoV-2 is the lack of accuracy in detection tools in the clinical field. Molecular techniques, such as quantitative real-time RT-PCR and nucleic acid sequencing methods, are widely used to identify pathogens. For this particular virus, however, they have an overall unsatisfying detection rate, due to its relatively recent emergence and still not completely understood features. In addition, SARS-CoV-2 is remarkably similar to other Coronaviruses, and it can present with other respiratory infections, making identification even harder. To tackle this issue, we propose an assisted detection test, combining molecular testing with deep learning. The proposed approach employs a state-of-the-art deep convolutional neural network, able to automatically create features starting from the genome sequence of the virus. Experiments on data from the Novel Coronavirus Resource (2019nCoVR) show that the proposed approach is able to correctly classify SARS-CoV-2, distinguishing it from other coronavirus strains, such as MERS-CoV, HCoV-NL63, HCoV-OC43, HCoV-229E, HCoV-HKU1, and SARS-CoV regardless of missing information and errors in sequencing (noise). From a dataset of 553 complete genome non-repeated sequences that vary from 1,260 to 31,029 bps in length, the proposed approach classifies the different coronaviruses with an average accuracy of 98.75% in a 10-fold cross-validation, identifying SARS-CoV-2 with an AUC of 98%, specificity of 0.9939 and sensitivity of 1.00 in a binary classification. Then, using the same basis, we classify SARS-CoV-2 from 384 complete viral genome sequences with human host, that contain the gene ORF1ab from the NCBI with a 10-fold accuracy of 98.17%, a specificity of 0.9797 and sensitivity of 1.00. These preliminary results seem encouraging enough to identify deep learning as a promising research venue to develop assisted detection tests for SARS-CoV-2. At this end the interaction between viromics and deep learning, will hopefully help to solve global infection problems. In addition, we offer our code and processed data to be used for diagnostic purposes by medical doctors, virologists and scientists involved in solving the SARS-CoV-2 pandemic. As more data become available we will update our system
    corecore